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Introduction

In this paper, there is formulated a linear theory of a

three-dimensional, elastic continuum which has some of the

properties of a crystal lattice as a result of the inclusion,

in the theory, of the idea of the unit cell. The equations

yield wave-dispersion relations with acoustic and optical

branches of the same character as those found at long wave-

lengths in crystal lattice theories and observed in neutron

scattering experiments. Although specific solutions are not

exhibited in detail, it is apparent from the form of the

equations that there will be interesting surface effects under

conditions of both motion and equilibrium.

SThe unit cell may also be interpreted as a molecule of

a polymer, a crystallite of a polycrystal or a grain of a

granular material. The mathematical model of the cell is a

linear version of Ericksen and Truesdell's deformable direc-

t tors [1]. If the cell is made rigid, the equations reduce to

those of a linear Cosserat continuum [2].

The method of derivation of the equations is analogous

to one used in deducing two-dimensional equations of high

frequency vibrations of plates from the three-dimensional

equations of classical linear elasticity. By the same tech-



nique as that employed in passing from high order theories of

plates to classical theories of plates, the equations are

shown to reduce, at low frequencies and very long wave-lengths

in isotropic materials, to those of an elastic continuum with

potential energy-density dependent on strain and strain gra-

dient and kinetic energy-density dependent on velocity and

velocity gradient.

A linear form of Toupin's generalization [8, Section 7]

of couple-stress theory [5-101 is obtained by eliminating the

difference between the deformations of the unit cell and the

surrounding medium; and linear couple-stress theory itself

is obtained by eliminating, further, the symmetric part of

the strain gradient. Both of these special cases are also

limited to low frequencies and very long wave-lenths.

1. Kinematics

Consider a material volume V, bounded by a surface

S, with Xi, i = 1,2,3, the rectangular componen.s of the

material position vector, measured from a fixed origin, and

Xj the components, in the same rectangular frame, of the

spatial position vector. The components of displacement of

a material particle are defined as

u X X.



Embedded in each material particle there is assumed to be a

micro-volume V' in which X! and xi are the components

of the material and spatial position vectors, respectively,

referred to axes parallel to those of the xi, with origin

fixed in the particle: so that the origin of the coordinates

x! moves with the displacement u. A micro-displacement

V' is defined: with components

U! -X! - ! (1.2)

The absolute values of the displacement-gradients are

assumed to be small in comparison with unity:

< < i < < 1.3

so that we may write

au. au.
= - j , uI uj xi't), (1.4)1

= =- CI; ; I t('I (O.5)
i2 x 2. j is

where t is the time.

Assume that the micro-displacement can be expressed

an a sum of products of specified functions of the xi and

arbitrary functions of the xi and t. An an approximation,
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retain only a single$ linear term of the serics:

/. u- =X1Skj , (1.6)

where *kj is a function of the xi and t only. Then

the displacement-gradient in the micro-medium is

"0,= (1.7)I 0ii

i.e., the micro-deformation *. is taken to be homogeneous

in the micro-medium V' and non-homogeneous in the macro-

medium V. In view of (1.3)2, jl << 1. The symmetric

part of *ij is the micro-strain:

- p(*ij + 'ji) (1.8)*(ij)

and the antisymmetric part is the micro-rotation:

¶ tijl -(*±j- v'j1) • (1.9)

An alternative interpretation of the micro-deformation is

that the quantities .ij are proportional to the components

of the displacements of the tips of deformable directors, as

described by Bricksen and Truesdell [1]. The *[ij] then

are the components of rotation of the Cosserat triedre [2,p.122).

We define the usual strain (now the macro-strain)

cii _½(•iuj + •jui), (1.10)ij 2+11 J
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and also a relative deformation (the difference between the

macro-displacement-gradient and the micro-deformation)

j uj - i (1.1n)

and a micro-deformation gradient (the macro-gradient of the

micro-deformation):

Xijk -i*jk • (1.12)

All three of the tensors c Yij and x are independent~ij ijk

of the micro-coordinates x!. Typical components of yij

and Xijk are illustrated in Figs. I and 2.

The ui and *ij are assumed to be single valued

functions of the xi, leading to the compatibility equations

emlkentj CiCjckt - 0 , (1.13)

emij)ixjkt ' 0 , (l.14)

Ci('Jk + Cjk - Yjk) "ijk (1.15)

where w ij is the macro-rotation:

W (j - ajui) (1.16)

and eisk in the alternating tensor.
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2. Kinetic and potential energies

Let the micro-medium be a parallelepiped with vol-

ume V' and edges of lengths 2di and direction cosines tij

with respect to the axes x!. Let x" be oblique Cartesian

coordinates parallel to the edges di, respectively. Then

(3, P. 153]

Sj '33

V, =8 'I ij..k II d d 2 d3 • (2.1)2

dV'I i I Idx"dx"dx" * (2.1)

Let PM be the mass of macro-material per unit

macro-vo lume and let p' be the mass of micro-material per

unit macro-volume. We define a kinetic energy-density (kinetic"

energy per unit macro-volume):

19 .dj~ - V, 2 ~~(j)(fij+*)dvI, (2.2)TI vv

where the dot designates differentiation with respect to time.

Upon substituting (1.6) and (2.1) in (2.2) and performing the

integration, we find

2~ IA2j (23)



where

P - 21+p, (2,3)2

2 dpdq(6pi6q 1 + ,p A q ,;+ 6 =d2 (2.3)p P qkJ~i- p2 q2 'kir 't.p -j1q3k 3 .L~dk 23)

and 6.. is the Kronecker symbol. In the case of a cube with

edges of length d parallel to the axes of x!-,•~I '

' = ij d =d d 2 d3 -d. (2.4)

Then the second tezm in (2.3)1 reduces to p'd'.ij'.ij . If

the material is composed wholly of unit cells, pM = 0. Then

p'=p.

For the potential energy-density (potential energy

per unit macro-volume), we assume a function, W, of the

Sforty-two variables c 'Yij' ijk:

W = W(lijTiJKijk) (2.5)

A small, rigid rotation of the deformed body is

described by a rotation, .ij - constant, of the macro-material

and an equal rotation *[ij] of the micro-material. The as-

sociated displacements are

""�I Uj •i - . - X'*ij . (2.6)

V

'.
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The addition of such a displacement' leaves W unchanged since

the added c ij,-y and Kijk are zero.

The assumptions (1.6), (2.2) and (2.5) are the minimum

that will lead to equations which yield the desired dispersion

relations for plane waves: including longitudinal and transverse

acoustic and optical branches. More or less thant (1.6), (2.2)

and (2.5) would be more or less than what is required.

The unit cell is taken to be a parallelepiped in

order to represent the unit cell of a crystal lattice. How-

ever, another shape would only change the tensor dý.. Also,

the cell can be interpreted as a molecule of a polymer, a

crystallite of a polycrystal or a grain of a granular material.

3- Variational equation of motion

We write Hamilton's principle for independent varia-

tions 6ui and 6.ij between fixed limits of ui and .ij

.4 at times to and t:

t t
6f (.7 -7)dt + f VWI = 0, (3.1)
to to

where 3 and 4W are the total kinetic and potential energies:

k3f TdV.,Wf WdV (3.2).
V V

and 67" is the variation of the work done cy external forces.
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In the usual way [4, p. 166], we find, from (2.3)

and (3.2),

t t
6f dt =-f dt f(piij6uj+ p'd 2 ikfldv. (3.3)
to t 0 3

As for the variation of potential energy, we first

define

3. W
"ij =,(3.4)

OW

"ij- C , (3.4) 2

Pijk- dri • (3.4) 3
S~ijk

"Then

W -- ¶j 5 Cij + Oij6^ij + Lijk6 "ijk'

i6u aij( iuj 6*ij) + Vijkii 6 *jk

= C±i[((j + aij)6uj] - i(rij+ aijluj - ij6,ij

i(iijk *jk) -ilijk6jk

Applying the divergence theorem, we find



6*W= f.6WdV
V

f i + aij )tudV- f("'iijk+OJk)6pj kdV

+ f n i(tiJ + a ij)6u'dS + fn iýijk6*jkdS (3.5)

The form of (3.5) is the motivation for the adoption

of the following form for the variation of work done by ex-

ternal forces:

6:Wf= f f.6u dV + f 1jk 6 7pkdV + f t6u..dS + f T-61/ds•
V V j S J J S k k

(3.6)

The definitions of u. and and the fact that

the integrands of the volume and surface integrals represent

variations of work per unit volume and area, yield the physical

significances of the coefficients of 6u. and 6*jk. Thus,

f is the body force per unit volume and t. is the surface

force per unit area (stress-vector or traction); 0 jk is to

be interpreted as a double force per unit volume [4, p. 187]

and Tjk as a double force per unit area. The diagonal terms

of 0jk and Tjk are double forces without moment and the

off-diagonal terms are double forces with moment. The antisym-

metric part 0 of the body double force doubis the body
couple. The antisymmetric part T[ jk] of the double traction
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Tk is the Cosserat couple-stress vector. In both ID and
jk jk

T)k' the first subscript gives the orientation of the lever

arm between the forces and the second subscript gives the

orientation of the forces. Across a surface with its outward,

normal in the positive direction, the force at the positive

end of the lever arm acts in the positive direction. ("Positive"

refers to the positive sense of the coordinate axis parallel

to the lever arm or force). Across a surface with its out-

word normal in the negative direction, the directions of the

forces are reversed.

Substituting (3.3), (3.5) and (3.6) in (3.1), and

dropping the integration with respect to time, we obtain the

variational equation of motion:

ij+ iij + fj - Pji)•)udV

a.+ D ptddjý,k)6jk dV
V i ijk 3kjk4  3 ~

+. f [t.-ni + ]6udS + )(T -ni+ )6*j
5'S + ij+ij i ujk i k ds°"

S~(3.7)

4i. Stress-equations of motion and boundary conditions

S From the variational equation of motion, there fol-

low immediately the twelve stress-equations of motion:
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Ci + a.ij) + fj = u, (4.)

di1ijk + °jk + .'jk 3 P'dtj*Lk' (4'.1)

and the twelve traction boundary conditions:

t = ni(,i + Oij), (4.2)1

Tjk= nij ijk (4.2)

In view of (3.4), (4.2) and the significance of

C ij, Yij, ijk, appropriate terminology appears to be Cauchy

stress for T relative stress for ai. and double stress for

•ijk" The twenty-seven components of g are interpreted

as double forces per unit area. The first subscript of a ji

designates the normal to the surface across which the component

acts; the second and third subscripts have the same significance

as the two subscripts of T. Typical components ofjk 1'ijk

are illustrated in Pic. 2.

The linear equations of a Cosserat continuum (21 are

!4 obtained by setting *(ij) - 0. Then G(ij) - Tij and

and there remain 1 Li[jk] (the Cosserat couple-stress) and c[i]

which has been regarded as the antisymmetric past of an asym-

R metric stress T However, in the present theory, the Cauchy

stress, Ti, is symmetric and O[ij] is the antisymmetric

part of an asymmetric relative stress a
2:j:
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Besides containing the linear equations of a Cosserat

continuum as a special case, Eqs. (2.5), (3.4) and (4.L) also

include, as low frequency, very long wave length approximations,

linear versions of the equations of couple-stress theory [1-10]

and Toupin's generalization of couple-stress theory [8, Section7].

These are considered in Sections 9-12.

If additional terms were retained in the series ex-

pansion (1.6) of the micro-displacement u!, higher order

stresses would appear. In addition to stresses corresponding

to double forces per unit area, there would be stresses cor-

responding to n-tuple forces per unit area. All of the latter

would be self equilibrating; whereas, of the Vijk' only the

11i(jk) are self equilibrating.

5. Constitutive equations

For the potential energy-density we take a homoge-

neous, quadratic function of the forty-two variables cij,

ii 7ij" ijk"

" cijkt ij k+ 2 bijktyijykt + 2 aijktmnrijkKVmn

+ djk-Yij + ijkLm•ijk£L, + gijkijkjk. (5.1)

SOnly • x 42 x 43 - 903 of the 42 x 42 - 1764 coefficients



in (5.1) are independent. The number of coefficients, the

relations among them and the number of independent ones are

given in the following table:

Cijkt Cktij = Cjikt : 9 x9- 60= 21

bijkt= bktij 9 >9-36 = 15

aijkmn = mnijk : 27 x 27 - 351 = 378

djjklm : 9"X 27 = 243 (5.2)

f ijktm ijkm : 9 27 -81 162

9 x 9 -27= 54
9U3

From (5.1) and (3.4)):

C = .. C..+g.. ..y+ f (5.3),
- pq pqijij ijpq ij +ijkpq'ijk

:'pq gpqij'ij + 'ijp ij 1 pqijk ijk (5.3)

c+ d 'Yij.apqikik (5.3)19pqr= fpqrijjij ijpqr 3pqrijkKijk

In the case of a centrosyimetric, isotropic material

(referred to as isotropic in the sequel) the number of in-

dependent coefficients is greatly reduced. As there are no

isotropic tensors of odd rank, dijktm and fijktm must vanis
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The remaining coefficients must be homogeneous, linear func-

tions of products of Kronecker deltas. There are three inde-

pendent products of two Kronecker deltas and fifteen independent

products of three Kronecker deltas. Hence

Cijkt = ij + LLtik6 jL + jt -it 6 jk '

bijkt= b 6 ij6kt+ b2 6 6jt + b36.i 1. , (5.4)2

gijkt = g 6 ij + g 6 ik 6 6 + g i6 jk (5.)

a. =a 6.. 6  6  + a 6..66 + a 6.6 6.
ijktmn aijkt mn 2aij km nt 3aij kn Cm

+a 4
6 k6 i 66+ a s 6 jk 6 i6 n+ a 6. 6 (6

4 jk iIt in jkintnt 8.jk in tM

+a 7
6ki 6jt 6mn+ a 6 ki 6 jmnt+a 6 ki 6 jn 6 m

+a 6.6.6 + a 6 6 ~+ a66
+a0oit im kn+ a=jt.km in 1 aakt, im jn

+a 6 6.6 +a666 +a6 6.6
1s it jn km a1 4

6 j 6 kn6 im+ al 5
6 k! 6i injm

The conditions (5.2) require the six relations

1 2 2 3a - " a' -a ,." -a "g -a

1 2 9 5 7 11 12

leaving eighteen independent coefficients. Thus, the potential
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onergy density reduces to

+- b3yij ++ g 1ij + (ji)Cij

1 1 •
+a.,xiik~kjj + a 2 Kiikxjkj+ I a 3 Kiik Kjjk+ 1 a 4 iK' k

111iC~ 2uk kj2 ukjk2 a jrikk

I1+axijjKkik+ f aKiji~kjk+ 2 K ijkKijk+ a1 1 ijk jki

1 1 1+ - a K.- K K +- K K
2 13 ijk ikj+ 2 14 ijk jik .2 15 ijk-kji, (5.5)

and the constitutive equations become

A~6 e 2u~c + g6 C. gy +y ), (5.6)
pq Pq + •pq I pqYii + 9,(pq 3 qp .

S g 6 pcii+ 2g . )pq+ b (6.pii 6b 2pq + b 3.)qp (5.6)2

L Oqr a I (Iiip gr riipq 2 (Kiig pr iri pq)+ a 3 xiirpq

+ a x.i6 r+ a(K i.6 + K.p . )+ a x. 6 + aKSa iiqr 5(qiipr ipi6gr) aiqi pr a]orpqr

+ a 1 (irp + Krp)+ a1 sKrq + a, 4  r + rqp(5.6)

6. Displacement-equations of motion

We may obtain twelve equations of motion on the

twelve variables ui and *ij by first inserting (1.10),

I
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(1.11) and (1.12) into the constitutive equations and then

the latter into the stress-equations of motion (4.1). There

is no necessity to assume spatially homogeneous material pro-

perties. In fact, the coefficients of elasticity and the den-

sities mav be taken as periodic functions, of oblique coordi-

nates parallel to the edges of the unit cell, of periods 2d..1

This would represent the periodic structure of a crystal

lattice. However, the equations would then be highly intrac-

table; whereas some of their main features are exhibited with

macro-homogeneous material properties, at least for wave-

lengths greater than the dimensions of the unit cell. The

isotropic case is especially simple; but nevertheless it still

contains many of the novel properties of the macro-homogeneous

material.

In the case of isotropy, the constitutive Eqs. (5.6)

apply and also (2.4). Then, for the macro-homogeneous, iso-

tropic material the equations on ui and ýi'j are

( : + 2g2)+ b 2) aaui + (X+V+2gI+ 2g2+ b+b Ii (6u .

-( .+b3 .j-g b 2)jj-g +b)j*ij+ fi- p iq 6l
'n
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(a + a )(Zk3yfk•ij+ "i~jkk)+(a + a11)(aj"k~ki+ 6iCkVjj)

+ (a3..+ ) 1iakaj+ a,6kak,6.j+ (a + a is jakik"

14 aokki kj+ a,, o ~ i + g

+aok i+ a klk*ji+ g1kUk6ij+ g2(aiuj+ C.u.)

+ b (C)u * 1)+ bJ (CJI-I

I~~kuk-~1 *k)6j 2j -3 i ji. ij= 3p i

(6.2)

7. Micro-vibrations

Consider solutions of (6.1) and (6.2) of the form

Si0mt

ui f i I ij )0 ij Aije J (T.1)

where the Aij are constants. Then (6.1.) are satisfied

identically and (6.2) become

b, 6iAA +bA + bA iA p'd2w2Ai. , (7.2)
2 i 3 j1 3

which admit the following solutions:

dilatational mode:

Al AA22 = A 3 A•ij=0. i 0j (7.3)1

M2 - 3(3b1 lb + bs)/p'd 2  (T3)
d
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shear modes:

Aij = Aj. i / j , Ai = 0, j = j (7.4,)

w 2 3(b + b )/p'd 2 ; (7.4)
2 32

equivoluminal extensional modes:

A.ii 0 ; A. =0 i j , (7.5)2

to.2  3(b + b )/p'd 2 ;(75)

rotational modes:

a r 3(b2- b ) p'd (7.6)2

The restriction of the potential energy-density to

be positive definite requires

3b + b + b > 0 , b + b > 0 j, b - b> 0.
1. 2 3 2 3 2 3

Hence a•d •D and cr are real frequencies. The corresponding

modes are analogous to the simple thickness-modes of vibration

of a plate. Just as the latter are independent of the coordi-
nates in the plane of the plate, so are the micro-modes inde-
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pendent of the coordinates x. of the three-dimensional con-
I

tinuum with micro-structure. Extensional and flexural waves

in a plate couple with thickness-modes, at high frequencies,

to form the highe.. jranches of the dispersion relations for

a plate. Analogously, we may expect longitudinal and trans-

verse acoustic waves, in the three-dimensional continuum with

micro-structure, to couple with the micro-modes to form optical

branches.

8. Plane waves, long wave-length

Consider solutions of (6.1) and (6.2) with f. and

,j.. zero and• ~3.
u(j * ,t) . (8.1)

-•u - i(x ,t), = (i 'x )

By means of linear combinations, the twelve equations may be

composed into three independent equations and three independent

systems of three equations each:

shear optical I:

"1(a + ( (b + b ) d(8.2)

(10  3a 1~V -*23 3* (23) 3 *(23)1

shear optical 11: the same as (8.2) except that *() is

replaced with '-i
22 33
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rotational optical:

2(ao -a )ZE 3] -(b2 -b)' -1 P'd24, (8.3)

10 3 1*23 3)p 33 (23)

longitudinal system:

D
k1It. 1 31 u2I. 12 C)1*11 1 1- )I p

k c u + k D k, D + k 3 0 * =!pRd2 D (8.4)
21 1 1 22 1 1 11 22"11 23 1 2P 2 1

k 3 u + k a D + k 6 ' - k' 4k = 2td "_
1 1 1 32 . 33 1 31 33

where 1 D -4' andS I 1 1 1

k 11  A + 2± + 2gI + 4g2 + b1 + b2 + bs 3

k -2a +a +a + 3 a +2a + 3 a +a +a
22 2 3 a 2 1o I 1 2 13 14 15

k 6a + 22 + a + 9a + 6a + a + 3a + 2a ,+ 3a+a+a 1
33 1. 2 5 4 5 8 ~ ~. z ,as

k23 32 k 3a + 2a2 + a +3a + a + 2a +a + a123 32 1 3a5 8 1 a14 15

kc m k 3g + +2g 3b + b + b
S13 1 2 1 2 3

k 1 2  -k 1 2 g2  + b 2 + b 3

Sk' me - (b2 +bs)
I22 22 5

Sk' 3(3b + b),
:33 42
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transverse system I:

~u -k au
132. 1 2 123* (12)- 13'1* (121] P**2

21 12. 2 -'22 )I.I2* (12) + C)a,2), (8.5)

k ~u k a 3 +) 3 o, 2 ;3* A ( 2r(1)

112 3211(12) 33 1. 1*(12] 3(12]- 3' (12]'

where

VL -+ 2g 2+ b 2

k =2a + a + a + 2a + 2a + 2a + a + a
22 2 3 8 10 11 13 14 15

'k m-2a + a + a + 2a -2a -2a + a a
33 2 3 a 10 13 14 is

Skc -k -a -a +~a -a ,

23 32 3 8 14 15

k k Ib --

31. 13 2 3

-- - -2 + b + b,
12 21 2 2 3

k' m2(b + b)
22. 2 3

k' m2(b -b),
33 2 3

transverse system 11: the same as transverso system" except

that u 2.0 (12) and 1*.21 are replaced with u%,1 (13)

and •[ 1s]" respectively.

:!
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If, now, (8.1) are specialized to the plane waves

U1 - Aiiexp[i(tx1 - Wt)], *ij Bij expWIx 1 - wt)], (8.6)

four dispersion relations (to vs. •) result:,

shear optical waves (so)(twice):

p'd2•)2 •b +b + (a +a )E.2 (8.7)
-3 2 3 10 13

rotational optical waves (RO):

pid 2wb -b + (a-Wa )e2; (8.8)
3 2 3 10 13

longitudinal waves (LA, 1O, [DO):

2k •2 k t k
12 13

21 22 22 23

v2 k k 2 +k' - p'd2w
333 33 33

(8.9)

.transvwerse waves (TA, TO, TRw) (twice):

pa?1 124 13t

It 2 +Rji..pld2a? t2 n0.

N2.22 2a 3 23

"33A 132 + 1• "--pd
S(8.10)
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These dispersion relations are similar to those en-

countered in a second order theory of extensional waves in

plates [11]. The relations (8.7) and (8.8) are like that for

the second face-shear mode in the plate. The relations (8.9)

and (8.10) are like that for the coupled extensional, thickness-

stretch and symmetric thickness-shear modes in the plate; i.e.,

one acoustic and two optical branches in each of (8.9) and (8.10).

In the dispersion relations (8.7) and (8.8) for the

non-coupled modes, there are cut-off frequencies ws and wr

respectively, at which the group velocity (dcdd) is zero.

Positive definiteness of W requires

a + a > 0, a -a > . (8.11)
10 13 10 13

Hence, the frequencies increase, from cut-off, with increasing

real wave numbers. Below the cut-off frequencies, the wave

numbers are pure imaginary with cut-off valuesb b b b
Sb•+,. , •. + i• ,(8.12)•!•ý,O • _ a oa a3

respectively, at zero frequency.

The behavior of the acoustic branches in (8.9) and (8.10), at

.3 low frequencies, is described by cull'"' w' (i -1 for longi-

tudinal and i - 2 for transverse): the values, at w - 0 and

- 0, of the first, second and third derivatives of w with
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respect to ~.We find

vi G)'=0 h2)0 (8.13)

where

2 (1 + 4)/P 12 -UP0(8.14)

89g2 (39 + 2g2 )2

2 3 1 2. 3

- ~2g~
b + 2b 0 (8.15)2

=2(a )/j +:2a), P 2 2(a 4' )rp,(8.16)
2. 1 2 3 4 5 2 3 4

h p'd 2 [2az2 +(az + 0)2]/13P, h 2  p-l p'd(14. 2)6p, (8.17)
1 2

b +- b b(++2-3(S 13 2g3) 21 b 3+

3/ 22

-I(1-0)(1+2a4p)a + 2apa -a(1-A)a +a(14v)a I

!2(-(1-m-) 3cg)a1 .(1[(2aV4)2 ]a + 1(1_22_f3)2 a+(3aV)2 a

+ a(33+20)a + cs(14a4i3)a 1 a(l-cz-P)a, 5 ,(.9
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2 2, 2 8

4 [(1_ff2 )a (1__p2) (a. +a )+ _j(i+_f)2 a + ~~ 2 a
a= ¼cc-". - }:. +•ioo-,- ½c14ja-• • ("23-.,a-o-2-)a,

54= 10- 11 13 2 14 2 i
5 = _ý c :,.p2 )aoC- " +(1+ ,032 a o + .1o32) - .1(1+21 3_302 .,,-c-,)a o.

Positive definiteness of W requires ', I + 2a, V > 0, while

h. > 0 by inspection.

It may be seen that the limiting group velocities

iý are less than those that would be calculated from the
1

strain-stiffnesses X + 211 and p. This phenomenon is due to the

compliance of the unit cell and has been found in a theory of

crystal lattices by Gazis and Wallis [12]. Inasmuch as = 0,

the group velocities at zero frequency are maxima or minima.

Which one occurs depends on whether W!" is greater or lessI 2

than zero; and this, in turn, depends on whether '2  is greater

2
or less than h2. Now La and h2  are positive quantities1 j

that are length-properties of the material - depending on

stiffness ratios, density ratio and the size of the unit cell.

Although d is probably smaller than the -is the density

ratio p'/p and the stiffness ratios a and 1 can make

either T or h the greater. Hence, as the frequency in-

creases from zero, both group velocities can increase or both

can decrease or one can increase and the other decrease - depend-

ing on the properties of the material. There is no analogue
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in the theory of homogeneous plates because they do not have

multiple stiffnesses and densities. The phenomenon does occur,

however, in sandwich plates [13] and it has also been found

in a theory of crystal lattices, with complex interatomic in-

teractions, by Gazis and Wallis [14].

At the short wave-length limit (R * a), the asymp-

totic values of the group velocities of the acoustic branches

are

2d-( 22 k 3
2 + f2~ (8.20)

1I II

from (8.9) and the same expression, with k replaced by

from (8.10). These can be much smaller than (8.13)I if

4(k - k 2 ) << (k + k )2 (8.21)

4(K - <<2 ) (j ÷ + )2 ( (8.22)
'22 33 23 22 33

which appear to be possible.

Regarding the optical branches in the longitudinal

and transverse systems, the former have long wave-length cut-

off frequencies as and wd while the corresponding quan-

tities for the latter are a), and cur. Thus, the two systems
have one cut-off frequency in common. One of the two modes

I



is shear and the other is equivoluminal extension. As in the

case of plates, the group velocities of all four optical bran-

ches are zero at the long wave-length cut-off frequencies ex-

cept in the unlikely circumstance of coincidence of cut-off

frequencies within a system (b = 0 for longitudinal modes

or b = 0 for transverse modes). Another parallel to the

situation in plates is that, as • increases from zero, the

behavior of the optical branches is very sensitive to small

changes in the ratios of material properties. One possibility

is that both lower optical branches have phase and group veloc-

ities of opposite sign; i.e., diminishing w with increasing

•. With further increase of •, the absolute values of the

group velocities would pass through maxima, then drop to zero

and then increase; i.e., the dispersion curves first would
I

have a point of inflexion and then a minimum.

A sketch of a possible configuration of the real

segments of the dispersion curves is shown in Fig. 3. The four

lowest branches (TA, LA, LO, TO) are remarkably similar to

those obtained by Brockhouse and Iyengar [15, Fig. 5] from

measurements of neutron scattering in germanium.

At the corresponding stage in the development of

equations of high frequency vibrations of plates, it is ex-

pedient to-introduce correction factors to compensate., as well

as possible within the framework of the theory, for errors

pdint o itroucecorectonfacorsto ompnsae, s wll
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introduced by the restrictive assumption regarding the varia-

tion of displacement through the thickness of the plate. The

analogous restriction, here, is the assumed homogeneous de-

formation of the unit cell. The values of the correction fac-

tors are obtained, in the theory of plates, by matching appro-

priate points, slopes and curvatures of the dispersion curves

with the corresponding quantities obtained from an exact so-

lution of the three-dimensional equations. Since the analogue

of the latter does not exist, in the present case, such an

adjustment cannot be made.- An alternative is to use experimen-

tal data.

There is another aspect of the theory of plates that

should be mentioned. It is possible for a thickness-mode

with n + m nodal planes to have a frequency lower than one

with n nodal planes. For example, in an isotropic plate,

the thickness-shear mode with two nodal planes has a frequency

lower than that of the thickness-stretch mode with one nodal

plane if Poisson's ratio is greater than one-third. Thus, a.

better approximation is obtained if a sufficient number of

terms is retained, in the series expansion of the displacement,

to accomodate this contingency [11]. The analogue, in the

present case, is the possibility of the appearance of a micro-

mode with frequency lower than that of the dilatational micro-

mode (7.3) if additional terms are retained in the series

.11
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expansion (1.6). However, because of the complications that

would ensue, such a step does not appear to be warranted at

this time.

9. Low frequency, very long wave-length approximation:

Form I

This section and the following three are devoted to

discussions and derivations of equations of motion simpler

than (6.1) and (6.2) but limited, in application, to much

lower frequencies and much longer wave-lengths.

As noted previously, when thickness-shear and thick-

ness-stretch deformations and the associated inertias are

taken into account in the theory of plates [16,17,18], thickness-

o~des of vibration, analogous to the micro-modes, are obtained

as well as flexural and extensional modes analogous to the

transverse and longitudinal acoustic modes. At low frequencies,

in comparison with the frequencies of the thickness-modes, and

at long wave-lengths, in comparison with the thickness of the

plate, the coupling of the flexural and extensional modes with

the thickness-modes is negligible. As the frequencies of the

flexural and extensional modes approach zero, the thickness-

shear deformation approaches zero but the thickness-stretch

deformation does not; rather,, it is the stress associated with



thickness-stretch that approaches zero. Thus, the antisymmnetric

and symmetric parts of deformation and stress have to be treated dif-

ferently in passing from high frequency equations to the class-

ical, low frequency equations. To obtain equations valid at

low frequencies in the case of flexure, the thickness-shear

deformation is made to approach zero by passing to a limit as

the associated modulus of elasticity approaches infinity.

The product of the two is indeterminate and this leaves the

thickness-shear stress indeterminate in the constitutive equa-

tions. In the case of extension, the thickness-stress is set

equal to zero and the resulting constitutive equation is used

to eliminate the thickness-strain from the remaining equations.

In both flexure and extension of homogeneous plates,

the thickness velocities are set equal to zero in the kinetic

energy, for the low frequency approximation, because their

contributions are negligibly small at the low frequencies to

which the resulting equations are restricted owing to the

. suppression of the thickness-shear deformation and the omission

of the thickness-stretch stress [18, 19]. The same is not

true of non-homogeneous plates. For example, in a sandwich

plate the rotatory inertia of the facings, about the middle

plane of the plate, can be of paramount importance, even at

low frequencies, for certain combinations of stiffness ratios,

density ratio and distance between facings (13].
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Now, the thickness velocities are analogous to the

micro-velocities iij; the thickness of the plate is ana-

logous to dimensions di of the unit cell; the thickness-

shear deformation is analogous to the antisymmetric part of

the relative deformation bfij]); the thickness-shear moduli

are analogous to the bij[k6]; and the stress associated with

thickness-stretch is analogous to the symmetric part of the

relative stress (a(ij))" The known process of descending from

high frequency equations of plates to low frequency, long

wave-length approximations can serve as a guide to the treat-

ment of analogous terms in the equations of the elastic con-

tinuum with micro-structure. However. regardless of the process

or of the theory of plates, the test of the validity of the

resulting equations of motion is that they yield the same dis-

persion relations that are found in the limit as c - 0, • * 0

for the acoustic branches of the general equations. Thus, in

the isotropic case, the valuesof ,W, and w!", in (8.13),1 1 1

must be reproduced exactly. Attention will be confined, here,

to this case because it is much simpler than the anisotropic

form and because (8.13) are available for the final test.

Inspection of (8.13) shows that, as in the case of

sandwich plates, it is not permissible to discard the micro-

velocities jij" Their effect is contained in the h2  and,
di tai

an remarked in the discussion following (8. 19), h 2 can be
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less than or greater than t depending on stiffness ratios,

the density ratio and the dimensions of the unit cell. Hence,

omission of the .ij would preclude the reproduction of the

low frequency behavior. The remainder of the process, however,

can follow the analogy with homogeneous plates.

Thus, we let

0 (ij) = 0, (9.1)

b 2 b 3  " [ij1 0 (9.2)

and proceed to find the effect of these assumptions on the

remaining terms.

The isotropic, constitutive equations for T and
pq

separated into symmetric and antisymmetric parts, are

-X6•C + C + g 6 7-- + 2g (pq)' (9.3)
pq pq ii 2 pq Ipq 11 2 p)

O(P)- g6qCi+ 2 g;cPq+ b 6 pq YU + (b,+ b )y(pq), (9.4)

"G[pq (b 2 b 3 .)1ypq] (9.5)

Then, with (9.2), aipq] is indeterminate in (9.5) and, with

(9.1), (9.4) may be solved for y(pq) in terms of cpqt

Y(pq) - a 6 p Cii + (1-0)6 (9.6)

where a and • are given in (8.18).
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With regard to Kijk, we note first that, since

7pq =pUq - *pq

and 7(pq] is now zero, we are left with

V[pq] = 'pq , 4 (pq) = Cpq - Y(pq): (9.7)

or, using the expression (9.6) for Y(pq) we have

4,(pq) a 6 pqFii + BC . (9.8)

Accordingly, KXjk - 8ijk = 8i•(jk) + reduces to

Sijk ai 6 + ½ -1(iijk, kj (9.9)

where

ijk -- iUk = ik (9.10)

Thus, the part of the potential energy-density that is a func-
tion of x becomes a function of i * the second gradient

ijk ~~~~~ijk: h eodgain

of the displacement. The eighteen components of 'i mayijk may

be resolved,' in more than one way, into tensors whose components

are independent linear combinations of the biajuk: so that

other forms of the energy-donsity, for the low frequency ap-

proximation, are possible. These are treated in Sections 11

and 12.
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Upon inserting (9.9), (9.6) and (9.2) in (5.5), we

find Form I of the low frequency approximation for the poten-

tial energy-density:

W-3.W WE iE. + LLE..r + al. i iik ..j + a 2 X ij j ikk

+ a it + -a -K + (9.11)
3 iik jjk 4 ijk -ijk i j~kki

where A and i are given in (8.15) and a ... • in (8.19).

1 5

The appearance of these coefficients is preliminary evidence

of the validity of the process.

We define new stresses:

'-= 'j. , (9.12)•

.jj
ILijk t1Cij A (9.12) 2

Then

""2pq -pqs (9.13)1

pqr uiip qr+ Orrii pq ilq pr)+ a1(iqr qii 6 pr

.ii qp rpq
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The variational equation of motion is now obtained

from Hamilton's principle with independent variations 6ui

alone since, by (9.7)1 and (9.8), the *ij are no longer

independent of the u.-

The variation of the potential energy-density is

6W = ij6E.j + iijk6-kijk,

Ya
= ij i6uj+ aijkrbijbjuk,

R j[(- ¾ ikijk)6ukl - jk-iijk)6Uk+'ki( ijk)j6uk)"

(9.14)
Hence

(9.15)

Now, in the last integral of (9.15), the variation •jSk is

not independent of 6u, on S: only its normal component

n ja6uk is independent. We separate the latter:

n ip a6 - n.Ljkj6 + n ijknjD6 uk (9.16)

where

Dj = (6i,- njnL,)a, D S n . (9.17)

The terms in (9.16) may be resolved, further, in more than one

way. In this section we follow Toupin [8] and reserve an
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alternative resolution [91 for Section 12. Thus, for the first

term on the right hand side of (9.16), which contains the non-

independent variation D.6uk, we write

ni.ijkDj 6 uk= Dj(njiijk6uk)-niD j ijk6uk-(D ni)ijk6uk• (9.18)

The last two terms in (9.18) now contain the independent varia-

tion 6 uk. For the preceding term, we note that, on the surface

S,

Dj (nijk6 uk)=(Dnt)rnnqe n (emtj nnnip i6Uk).(9.19)~ .ijk u.=D.nni i..6u q p 't'~'~jk~c

By Stokes's theorem, the integral, over a smooth surface, of

the last term in (9.19) vanishes. If the surface has an edge

C, formed by the intersection of two portions, S and S,

of S, Stokes's theorem gives

fnqe•ejjnni k6= [n ijkj6ukds, (9.20)
s C

where m. - emtj smtun and the sm are the components of the
unit vector tangent to C. The bold face brackets [ I in

(9.20) indicate that the enclosed quantity is the difference
between the values on, S and S

S1 2

SFinally, we note that, in the first surface integral

"in-(9.15), we may write

n- njDipijk+ ninjDLijk. (9.21)

V.
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Then, assembling the results in (9.15)-(9.21) we find

f WV =- v ij(jk- ýLijk)6tdv

+ f[ni k-nin Di ijk-2njDiik+(ninjDtn-DLjni)jl6ukdS

+ fn njIL..kD6ukdS + 0[n.m.(.2
+ , , p - ' j-i'jk ]6uk. S . (9 .22 )

This form suggests, for the variation of work done by external

forces,

60 fr 6u,,dV + fPk,6 u.kdS + f1kD6ukdS + ýE6kd. (9.23)
V k k S S Ck

As for the kinetic energy, the micro-velocity *ij'

in (2.3) .must be replaced by a linear function of macro-veloc-

ity gradients:
•,, 'i'ij hij..•, (9.24)

jkka

where

•'h hik.-1(6 6 -6.. 4,.a•.6 6 +-!P(6 6j.,+6, a.
ijkt 2 A jit. j,- ij k, 2 ACiit je jk))

(9.25)

so as to satisfy (9.7)I and (9.8). Then the kinetic energy-

density (2.3) becomes

1•, - "e"m ~ mm' ,• •_•• ,
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I-2

= P~j~j + 6 ~pP d~lcmfl(3m~n )Uk] (Pdkmn)

(9.26)
where

A2 =d 2 h h.d2
pkmn jL lqpk jqmn mnpk

2 pm~kn6pn~km +a3+t) k6m m6k.+ nk)

(9.27)

The total kinetic energy is

f~dV~f p daM+f -6ptfIn 2()m~n dS;
fl. f dvmf (p %%- (V V " " PS P

(9.28).

from which

~tz tx

6f r dt= -f dtf [p~- pkmn lm n)~kd
to to V

-f dtf- npdn n m(n (9.29)
to S

The variational equation of motion is forrned from (9.22), (9.23)
and (9.29), from which follow the stress-equations of motion

and boundary conditions:



3 p a2 nm (9-30)

nj ijk-ninjEijk-2njD ijk+(ninjD i D -Dni);ijk

+ A p, n ,• D)= U'+ ' (9.30)
3 nppikmn(m n nnD-n k

"jnýnijk- , (9.30)3

-n m ;ijk = (9.30)

The displacement-equations of motion are obtained
by first replacing 2c with u + ijk

a Cijuk, in (9.13), and then substituting the latter in (9.30)1.

The result is

(9.31)

where the L and h? are defined in (8.16) and (8.17).

4 Omitting the body force and taking the divergence

and curl of (9.31), we find the equations governing the prop-

ag'ation of dilatation and rotation:

S( 12V•- (9.32)

2 2 =Ih2 (-2

where the 1 are defined ixi (8.1i). For the plane waves

'.,
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(Y.9,VXu)=(A,A)exp[i(Cn.r - ut)], (9.33)

the dispersion relations are

,,,.= 2 .( + "2)/(l h•2 ),

from which follow exactly the properties (8.13). Thus the

validity of the approximate equations for low frequencies and

very long wave lengths is established. The dispersion rela-

tions (9-34) are illustrated in Fig. 3 by the dashed curves

labelled L and T.

10. Relation to Toupin's generalization of couple-stressS~ theory

4 The theory of elasticity with couple-stresses, which

is considered in [5-10], is based on the same kinematics as is

classical elasticity; but the potential energy-density is as-

Smused to be a function of the strain and the curl of the strain

instead of the strain alone. In the linear theory, the compo-

nents of the curl of the strain are the same as the components

of the gradient of the rotation: eight independent linear

combinations of the eighteen components of the second gradient

I of the displacement. For the equilibrium case, Toupin

[8, Section 7T has generalized the theory to include all eighteen

components. If the inertia terms are omitted, (9.30) are iden-
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tical, in form, with Toupin's Eqs. (7.8)-(7.11)*. However,

although the form is.the same, these are some significant

differences. Equations (9.30) pertain to a low frequency,

very long wave-length approximation to the equations of a

material with micro-structure and the effect of the micro-

structure survives, in both the potential and kinetic energy-

densities, through the contribution of the symmetric part of

the relative deformation. This part, i(ij), can, in fact be

traced to -ij and Pijk" in (9.30), through the coefficients

a and , in W. Similarly the contribution of -(ij) to

the acceleration terms in (9.30) can be traced through the

coefficients a and a in hijk• and then in jk Onijktijkt.

the other hand, Toupin's equations do not stem from considera-

tions of microstructure.

The equations of the material with micro-structure

can be reduced to those of a material without microstructure

(i.e., to a micro-homogeneous material) by causing the micro-

medium to merge with the macro-medium. This may be accomplished

(just as readily, in this case, for the anisotropic as for the

.Isotropic medium) by passing to the limit as

bijkt 'ij 0 , (lO~l)

* Note that, by definition, Toupin's .Pqr is symmetric in
4 the second and third indices, whereas ýLjpk is symmetric in

the first two indices. Notr, also, tha - should be replaced
, by -b in Toupints Eqs. AB, (7.9) and (7.19).
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instead of (9.1) and (9.2); and, at the same time, p p',

so as to remove the distinction between micro-and macro-den-

sities (i.e., pM. 0 in (2.3)5). Then

*'ij iuj I ijk "iJUk - jk , (10.2)

instead of (9.7), (9.8) and (9.9). Accordingly, from (5.1),

W :5 ijktC ij : kt aijktmn~ijkKtmn+ ijktm2Cijk tm(10.3)

and we define new stresses

'1 '0.7 (10.4&),1.3

• -o = •o ~-o (o•)
9iJ Ajc .0i (10.4)2

Also, in the kinetic energy-density (9.26),

- 6 d 6 (10.5)
"d pkmn pm kn

!• where the d• are again given by (2.3)

In the isotropi.c case d ,2  - d2 6 and Wo , j k
•: pm pm

"have the same form as n , i •ijk but the coefficients are

Is p, a ... a instead of •,j, .
The formulation of the variational equation of motion

proceeds as before and we arrive at the stress-equations of

motion and boundary conditions:
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.j jk I i~~jk). + P U . u' nmk

0_.

njk n n E1I k- 2n Dji +(n n D n D Dn 4 )i~

+ I p'npd 2(Dm~UkJ+ n Diik)= 1 , (10.6)2

n ný'ijk (10.6)3

in~ ~ .ý? (o.106)4

Without the acceleration terms, (10.6) are now pre-

cisely the linear form of Toupin's equations; and (9.30),

without the acceleration terms, differ only in that the co-

*. efficients in TI and %o (and hence in the stresses) have

different meanings. However, with the acceleration terms in-

cluded, the forms on actually different: the fourth rank tensor

Zpkmn in (9.30) is replaced by the second rank tensor d2 in

(10.6) so that there are fewer coefficients in the latter.

In the isotropic case, it is only necessary to let

S'••AS' p." J, a 0* , 13 1• , (or g -1,0,9 -'0O)(10-T)-

in the equations of Section 9, to reach the equations of the

micro-homogeneous medium. Thus, (9.31) reduces to

(W+2)(1-22)w.U_-(l-•2V2)• +V- •(l- 1 2V,1.., (10.8)

1________ 2"
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0 t20where t. and 02 are obtained from 12 and t2, in (8.16),
1 . 2 2 2

by employing (10.7). it will be observed that the left hand

sides of (9.31) and (10.8) have the same form, but the right

hand sides have different forms because, with (10.7), h2 =h 2 = Sd2
1. 2 3

The dispersion relations for plane waves, from (10.8) are

M *=V 2 ?ý2/ 1+- d 2 t2 ), (10.9)
1 1.t 3

where V2  (+2.i)/p', V2  /p'; and the properties at o = 0,
'.2

= 0 are

v, . V0 3 d) (10.10)1 1_ 1 i 11

instead of (8.13).

The difference between the equations of the micro-

homogeneous medium and the equations of the low frequency,

very long wave-length approximation is similar to the difference

between plane strain and plane stress; or, more appropriately in

the present context, to the difference between equations of low

frequency extensional vibrations of plates with the thickness

of the plate constrained and not constrained to remain constant.

In the case of equilibrium, the difference is solely in the

physical interpretation of the elastic stiffnesses. With stiff-

nesses determined by experiments falling within the restrictions

of the equations, the two equilibrium theories would be indis-
tinguishable. For example, the numerical quantity that would

be assigned to the stiffness I, in one theory, would be
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assigned to p. in the other. In the case of motion, however,

there is an essential difference as the number of coefficients

is not the same in the two theories unless g = g =0, which

is analogous to zero Poisson's ratio.

11. Low frequency, very long wave-length approximation:
Form II

As noted before, the eighteen components ai)jUk

may be arranged in independent linear combinations which form

tensors. One such, indicated by Toupin [8, p. 404], is the

gradient of the strain:

•ijk -i jk (i juk + iuj) " ij (1.1).

The potential energy-density, for the low frequency,

"very long wave-length approximation, may be expressed as a

function of cij and Kijk by setting

A A A(11.2)
ijk ijk ÷ jki- kij

-in (9.11), with the result:

W4W**W- C + C + A + •a i•. a
2 ii ii ~i ljiikr-kij 1 a ijjik 3iikxjjk

+A AA A

4 aijkLjk+ s~ijk.Nji ,3

A•



'where

a 9-a 47a a =~~ +~1 1 3 21 2 3"

a raf ,a 37a -i , -21 + 2a (11.4&)
3 3 4 4 5 5 4 5

New stresses are defined by

W

AC W

•ijk= ijk VLikj (11"5)2

whence

~pq ~pq ii +Ipq

aL~(6 ^ .+ 26 i.+ 6 i. + 2a
pq rnI. qrr ii~p rDpI 2qii.i

+ pq •ir pr iiq + xpqr rpq )2

The variation of the potential energy-density is

6C ~+ 8U~6j~uj~~ + I~jC)i 6l

Now, (11.7)' has the same form as (9.14) and the kinetic energy

density (9,26) is unchanged. Hence, the variational equation
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of motion has the same form as in Section 9 and leads to bound-

ary conditions like those in (9.30) and.stress-equations Qf

motion:

C)( -pjai )a Fjii~A (11.8)j( Jk- •itijk) Fk 3 p(Pakp, pj n) m n

-A A

Recalling that 1 ijk = 1 jik whereas •ijk : •ikj' the quantity

in parentheses on the left hand side of (9.30.). is not sym-

metric but the corresponding quantity in (11.8) is symmetric.

The latter is a more convenient form for the introduction of

a stress function of the Airy type.

To get the displacement-equation of motion, sub-

stitute (11.1)2 and (1.10) in (1i.6) and the latter in (11.8).

The result is

(1•+2.(l_-2V2 ) vv.u-j( i-t2V2 )_xvx• + ' = p(_ ..2-h 2 -_ U + hV.) 2

12 1

(11.9)

where
2==2(a +^+a 4+• )/(•+2), +a(a +2a +a )/2j. (11.10)

1 2 3 4 5 2 3 +"4 +^5

In view of (l.4), ti t " so that the displacement-equations

of motion (11..9) and (9.31) are identical.

12. Low frequency, very long wave-length approximation:IForm III

For some purposes it is advantageus to separate the

curl of the strain (or. the gradient of the rotation):
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ij j jtm t mi =2 ej m~i•Um. (12.1)

from 6i jUk as Kij is the part of 3£-juk that gives rise

to couple-stresses. The double stress is separated, thereby,

in to a non-self-equilibrating part and a sel-f-equilibrating

part. Now, iii = 0 . Hence 7ij has only eight independ-

ent components. (They are the components of the dyadic K

in Reference [9}.) The remaining ten linear combinations of

the a16iuk were considered separately by Jaramillo [20].

They can be expressed as

+ le 11 -1 + .6

ijk= Kijk+ 3eitjkl3 itk jLC 3 juk+ i . j ku)

(12.2)
i"= = - - = sflysm

Thus, Kijk= KXkij - 'jki = 'Jik; i.e., is fully sym-

metric.

The potential energy-density, for the low frequency,

very long wave-length approximation, may be expressed as a

function of cj" xij and kijk by setting
S~ij, ijk

-iK. - 6 -eit (12.3)ijk uik 3 ~~C3eitj

in (11.3). The result is

v we rd + rd IiEjc~c+2,.~~~

J:: ÷ •2+ az~l~k- + " '-a i jk£1jk+" ?a ei ;CU% (12.4)
2.2

l•]
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where

18d =-2a +1• +a3 +6• -3•,
1 1 2 3 4. 5

2 1 2 3 3 2 + 2 +a 3

a 2 a 4+ a , 3f=a +4^a -2a (12.5)
2 4 S1 2: 3

The definitions

1)

rij = , ii=o, (12.6)2

= -ijk kij= -jki '1jik' (12.6)3
""7r'ijk

where 'ij is the couple-stress deviator, lead to

irp lX6pqcpq + 2pq1.)

.a,;pq + Q (12.7)2

;W = i•,(ji,6p+ ;iip~qr+ iiq~rp) + 2;Ipqr

"13 Z'iJl8peijr÷ 6qreijp+ 6rpeijq) * (12"71.

The variation of the potential energy-density now

takes the fom
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-67W Tl 6e .+ aj6. .6i.+ ýijk6Xi.
= ijjk 6 Kijk,

= a.[Q(• -ijk l*+ I(Ijk.

where

'1 ijk= 2 eJk•yi÷ Dijk k (12.9)

Again, (12.8) has the same form as (9.14) and so we can find

stress-equations of motion and boundary conditions of the

same form as (9.30), but with 1i- replaced by Such
ijk ~Ijk

a form of the boundary conditions cannot be compared directly

with the results of Reference (9] because, there, one of the

independent variations was taken to be the tangential com-

ponent of rotation - which here is embedded in the normal

derivative D~uk. To get the alternative form of the boundary

conditions, we can return to (9.16) and further resolve:

D6uk -. 2 6winjeeijk+ Dk(ni6ui)-(Dkni)6ui+ nk6 Fnn (12.10)

where 2i(= ½ eit um) is the rotation and en (not summed)

* is the normal component of strain ninj £ Then integration

by parts and application of the divergence theorem and Stokes's

theorem leads, in the notation of Reference (9], to
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6W = 2 - xy- - V. . ) 6 d

+f[ n.ixn+2nx(n . .n)xýn]-(6wxn)dS + f•n:•..6rnn dS
S S'

~ýne +(R X r- -,•+_x)(.• + _.=.n._)_].6uds (12.11)
C

where s is a unit vector tangent to the edge C.

The variation of work done by external forces is

now taken to be

6d= S+ E-6uds . (12.12)

Here Q is the tangential component of the couple-stress-vector

and R is a double force per unit area, without moment, normal

to S.

The variational equation of motion then yields the

stress-equation of motion

1 .I-ytLy Fmfn- y.flid~ (12.13)

Y'ý and the boundary conditions

-L X.. , x,[.-.;t )-(..) .D-i •..X(x-(+.o -Z nn) ]+ 1 '.•,•- __

(12. 1i4)
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ii .~xn42n~x(n-a-n)X n = (12,4.•n-•n RIP (12.14)

sn:1-n = R, (12.14)

.2~ nn LL 4

The displacement equation of motion is obtained by

substituting (1.10), (12.1) and (12.2) in (12.7) and the

latter in (12.13). The result is

(j+)(1-Z2V2 VV'u-•I-%2V2) VXVxu+F=p (iU-h 2 VV. u+h 2 VxVxu), (12.15)

where

12_0i( + 2• )/€X+4), t2 =(3a +g+2i - )/I. (12.16)
.3 3 2 2 1 1 2

In view of (12.5) and (11.4),

, say; (12.17)

so that all three forms of the low frequency, very long wave-

length approximation yield the same displacement-equation of

motion. Necessary and sufficient conditions for positive

definiteness of are

•i~ .> 0., -a• < a= < a•

a > Os 3i + 2i > O, I< 0 (12.18)
2 en 02

Hence t2> 0 and we have already seen that h2 > 0
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The equations that were considered in Reference [9]

are obtained from those of this section by setting zijk = 0

in the potential energy-density and p' = 0 in the kinetic

energy density. Accordingly, the limitation to low frequencies,

long wave-lengths and large dimensions is more severe than

was apparent previously.

13. Solution of the approximate equations of equilibrium

In this Section it is proved that any solution, u,

of the equation

(1+2ji)(l-L2v2)VV.u-_-2( 2 v 2 )vVXu + F=O ,2 (13-1)

in a region V bounded by a surface S, can be expressed as

u B-t-VV.B 1 (k - 'e 2 )Y[ r.(1-_tV 2 )p + Bo], (13.2)1
2- Z 122

where

. - F (13.2)2
2 " --

ji(l-L 2V2 )V2B, - r.r(-L )_ - '1LVV., (13.2)t

S~k =+
1

and . is the position vector.

Consider a field point P(x,y,z) and a source point

Q((t,97sC) and define

p -f r Q (13.3)
V
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where
"r2 -(x-a) 2 + (y-n) 2 +(z-_)2 dV= dtdTrdC.

Then V2 U -u [3, p.210], or

VVwu - VxVxU =u (13.4)

Define

E -V.U,=- Vx u, (v.H= 0). (13.5)

Then, from (13.4),

U= Vq +VxH, V.H= 0 (13.6)

which is Helmholtz's resolution. Substituting (13.6) in

(13.2) .we have

IV [k( 1-_t 2 V2 )W +(l-L2 V2 )vxH] + - 0 , (13.7)

I2

where k - (1 + 2ý)/I . Define

-rI-2
47rt2Bf r-le .11 [k 1l-&2 V2).W+( 1_t2 V2)V~JdV (13.8).

Then [3, p. 210]
(1-ti,2 ., - k(1-Lt2V2 )V +(1-=2 v2 )vX (13.9)

and, from (13.9) and (13.7),

(•-t 2 v 2)v. - - F . (13.10)

Also, the divergence of (13.9) yields
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(1_V 2 ) V.B,- k(1-t 2 v2 )v2  (13.11)
2 1

Define =* r-(1-L,2 2 )B.' (13.12)
- 2

Then, using (13.10), we have

ý( 1_t )V2- 4_V.F- 1_22• 2 )F+2( 1-tV2)y--p,. (13.-13)

Define
Di = 2k(*-*) (13.14)

and find

ji(1lt 2 V2 )V 2 B = r. (1V 2¶)F -;- 4tV.p (13.15)

by using (13.11) and (13.13). Also, from (13.14) and (13.12),

i *r.(1_t2 B,+ % . (13.16)

Now, define

p jpg2 y.Bm_](..4 2 V2 )S7r 13W7

By (13.11), V-D 0; which is a necessary and sufficient

condition for the existence of a function H* such that

Vx _ * D, i.e.,

VXH*_ B, --V.•'t-(- 2 V 2 )2 . (13.18)

Making use of (13.9) and (13.11) we find

(1t22VXH*_(l1-tV2) V>M (13.19)
Net defin

" Next, define - VXH-VXH* (13.20)

ls I
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and note that, by (13.19) and (13.20),

0)2 , O VB" 0 0. (13.21)
2

From (13.20), using (13.18) and then (13.16),

VX H=B"+B,-. 2 V -,- (-(12V2)Vfr-(1-2V2 B,)+ Bo (13.22

" "2 *'- 2 2

Then substitute (13.22) and (13.16) in (13.6) to get

1

u =B"+B'-t 2 " V(B"-2' - +B )I 1(k-t 2v2)•r (1l-t2)-2+B] (13.23)

Finally, define

B B, + B" (13.24)

In view of (13.21), we may write (13.23) and (13.10) in the

form of (13.2) and (13.2)2; and (13.15) is already in the

form (13.2) . Thus Eqs. (13.2) are a complete solution of
3

(13.1). If ,2 0, (13.1) reduces to the equilibrium equation

of couple-stress theory and (13.2) is the solution found in

[9]. If both L2 and 42 are zero, (13.1) is the classical
2.1 2

equation of equilibrium with body force and (13.2) is the

solution found in [21]. If, in addition, the body force is

zero, (13.2) is Papkovitch's solution (22]. The proof follows,

generally, that in [23] but with an improvement as a result

of an illuminating criticism by R. Sternberg.
'A,
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14. ;.Concentrated force accordinq to the approximate
equations

In an infinite region V, let the body force be

zero outside a finite region' VO0 which contains the origin

and a non-vanishing field of parallel forces F. A concentrated

forr, is defined by

P= li f F dV" V ÷O V

In [9] it was shown that, in an infinite region, solutions of

equations of the type (13.2)2 and (13.2) are2 3

4 = fr-(1-e e-r4/2
VI

1. v - 2 v2 2V FQdVQ,((14.)

where r'.Vle+ 2

Now lir r r, lir r- 0. (14.4)
VO3 0 Vo) 0

Hence, for the concentrated force, (14.2) reduces to

7aib " r-i(l-e- e * (14.5)

In (14.3) the term in the integrand of the form *(r )VQ. Q is

transformed according to

!1VoQ.?dVj7-I[V0 .(*i0)-F '0. ]dVav 0 =;* n.ZdS-fF 0 V0 dV0 . (11.6)V 0 Q V SW SW ."C V-Q ' -Q
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The surfpce integral in (14.6) vanishes because F 0 outside

V . Also

lur fFQ.VQ C(r)dVQ =(1.7)
V -1. 0 V

0

Hence, for the concentrated force,

-r/,t
rB 0 = t2P. 7V[r-'(-e (14.8)

Equations (11.5) and (14.8) constitute the solution of (13.1)

for the concentrated force. If t2 = 0 then B = 0 and
I *

the solution reduces to that found in [9]. If, in addition,

t2 0, the solution reduces to Kelvin's [4, p. 183].
2

15. Surface effects

It has been noted, in Section 8, that the dispersion

relations, for the material with microstructure, have forms

similar to those for a second order theory of extensional

vibrations of plates [11]. Interesting types of motion which

have been found to occur at a free edge of a plate, may there-

fore be expected to appear at a free surface of a material

with micro-structure. Examples are: trapping of energy, at

a boundary, upon reflection of waves [21]; additional modes

of vibration with deformation localized at the boundary [24&]-

additional types of surface waves at high frequencies [25].

-I
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Toupin and Gazis [26] have shown that, according

to Toupin's generalization of couple-stress theory (8, Sec-

tion 71, a .free surface, of a non-centrosymmetric material in

a state of homogeneous initial stress, will draw in or push out

in a thin boundary layer as observed experimentally by Germer,

MacRae and Hartman [27]. The equations of the elastic material

with micro-structure admit this phenomenon even in centrosym-

metric materials. To see that this will occur, first add the ini--

tial stress terms
Coii + boyii

to the potential energy-density (5.5) of the centrosymmetric,

isotropic material.. If co0 and bo0 are taken to be constants

of the same magnitude but opposite sign, there will be a homo-

geneous, isotropic initial stress, T. and o-. with no
ij 0 ij'

traction tj, according to (4.2),, across any surface of an

infinite body under no external forces. However, from the

equilibrium equations (4.1)2 (with 4Djk and *tk zero) there

must be non-vanishing 1ijk" Hence the surfaces, say x= + h,,

of'a plate will have double tractions Tik acting on them,

Saccording to (1.2) . The removal of these double tractions,

so as to free the surfaces, will result in deformations governed

by (8.1) with the right hand sides set eqqal to zero. Now,

the system of Eqs. (8.4) is equivalent to a sixth order equa-

tion of the form
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-2 - i - . 0 (15.1)I 8• " uX/ 3x2

where J2 and 2 are the non-zero roots, probably conjugate

complex, of (8.9) with wn = 0. Deformations governed by an

equation of this form are localized at the surface. If the

plate is replaced by a sphere, the analogous solution is that

for surface tension on the sphere.

In the case of problems of equilibrium and propagation

of cracks (28], the equations of the elastic material with

microstructure will supply an energy accompanying the formation

of new surfaces.

In stress concentration problems, similar additional

"boundary layer phenomena will occur - over and above those by

which solutions in couple-stress theory [9, 10] differ from

those of classical elasticity. The added effects may alter

the conclusions that were reached on the basis of couple-stress

theory.

Acknowledgement I wish to thank Dr. R. A. Toupin for many

valuable discussions.
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